Representation Parameters for Classical Groups and the Real Weyl Groups

Annegret Paul

Western Michigan University

CBMS UMass Boston 19 July, 2012

Overview

Let G be a real reductive Lie group.

Problem

Find all irreducible admissible representations of G.

Tool (as DAV explained in the last lecture): The Langlands classification says:

Representations correspond to pairs (H, χ) , up to conjugation by G. Here H is a Cartan subgroup (CSG) of G, and χ a character of H.

Understand conjugation by G:

- Find the conjugacy classes of Cartan subgroups (CSG)
- For each CSG H, compute the real Weyl group $W(G, H) = N_G(H)/H \cong N_K(H)/(H \cap K)$

Goal: Find $\hat{H}/W(G, H)$ for all conjugacy classes of CSGs *H*.

To find all (theta stable) H, we find lots of CSGs, show they are pairwise not conjugate, then show that these are all.

Tool: Kostant's "Cascade construction".

Need:

- Fundamental (maximally compact) Cartan subgroup $H_0 = Cent_G(\mathfrak{h}_0)$
- $\Delta = \Delta(\mathfrak{g}_{\mathbb{C}}, \mathfrak{h}_{0,\mathbb{C}})$
- *W*(*G*, *H*₀)

CSGs are in bijection with sets of *strongly orthogonal* (i. e., orthogonal, and no sum or difference of two is a root) noncompact imaginary roots, up to conjugation by $W(G, H_0)$.

Example: G=SL(2,R)

 $H_0 = K = SO(2), \Delta = \{\pm \alpha\}, \alpha$ is noncompact. K acts trivially on H_0 , so $W(G, H_0) = \{1\}$.

Sets of strongly orthogonal roots: \varnothing and $\{\alpha\}$, corresponding to H_0 and $H_1 = \left\{ \begin{pmatrix} r & 0 \\ 0 & r^{-1} \end{pmatrix} \right\} \simeq \mathbb{R}^{\times}.$

The element $\sigma = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in K$ switches the diagonal entries. Since conjugation preserves eigenvalues, this is the only nontrivial Weyl group element. So $W(G, H_1) \simeq \mathbb{Z}/2\mathbb{Z}$, with the nontrivial element acting by inversion on \mathbb{R}^{\times} .

$$\widehat{H_0}/W(G, H_0) \longleftrightarrow \mathbb{Z}, \ k \in \mathbb{Z} \Rightarrow \chi_k(e^{i\theta}) = e^{ik\theta};$$

 $\widehat{H_1} \longleftrightarrow \mathbb{Z}/2\mathbb{Z} \times \mathbb{C}, \ \chi_{(\epsilon,\nu)}(r) = \operatorname{sgn}(r)^{\epsilon} |r|^{\nu}, \ (\epsilon,\nu) \sim (\epsilon,-\nu).$

Example GL(2,R)

$$H_0 = T_0 A_0 \simeq \mathbb{C}^{\times}$$
, $T_0 = SO(2)$, $A_0 = \left\{ \begin{pmatrix} r & 0 \\ 0 & r \end{pmatrix} \right\} \simeq \mathbb{R}_+^{\times}$

$$\begin{split} &W(G,H_0)=W(K,T_0) \text{ (since } A_0 \text{ is in the center of } G \text{)}. \\ &\sigma = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in O(2) \text{ acts by inversion. Conjugation preserves} \\ &\text{eigenvalues and trace, so this is the only nontrivial element.} \end{split}$$

 $W(G, H_0) \simeq \mathbb{Z}/2\mathbb{Z}.$

 $\Delta = \{\pm \alpha\}$ noncompact imaginary. As for $SL(2, \mathbb{R})$, we have two CSGs, H_0 and the diagonal split $H_1 \simeq (\mathbb{R}^{\times})^2$.

 $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in K$ switches the diagonal entries, and that is the only possibility.

 $W(G, H_1) \simeq \mathbb{Z}/2\mathbb{Z}.$

GL(2,R), representations attached to the fundamental CSG

$$H_0 \cong \mathbb{C}^{\times}, \text{ so } \widehat{H_0} \longleftrightarrow \mathbb{Z} \times \mathbb{C}, \ \chi_{(k,\nu)}(re^{i\theta}) = r^{\nu}e^{ik\theta}.$$
$$W(G, H_0): (k, \nu) \sim (-k, \nu)$$

Which representation does this parametrize?

Real parabolic $P_0 = M_0 A_0 N_0$,

 $M_0 = SL(2, \mathbb{R})^{\pm}$, $k \leftrightarrow$ discrete series or limit of d.s. σ_k of M_0

 $\nu \leftrightarrow \text{character of } A_0$

 $\pi(k, \nu) = \text{Langlands}$ quotient of $Ind_{P_0}^G(\sigma_k \otimes \nu \otimes 1)$.

(This is, of course, just $\sigma_k \otimes \chi_{\nu}$ in this case, since $G = P_0$ and N_0 is trivial.)

GL(2,R), representations attached to the split CSG

$$H_1 \cong (\mathbb{R}^{\times})^2, \text{ so } \widehat{H_1} \longleftrightarrow (\mathbb{Z}/2\mathbb{Z})^2 \times (\mathbb{C})^2$$
$$W(\mathcal{G}, H_1) : (\epsilon_1, \epsilon_2, \nu_1, \nu_2) \sim (\epsilon_2, \epsilon_1, \nu_2, \nu_1)$$

Real parabolic: minimal parabolic
$$P_1 = T_1 A_1 N_1$$
,
 $T_1 = \left\{ \begin{pmatrix} \eta_1 & 0 \\ 0 & \eta_2 \end{pmatrix} : \eta_i = \pm 1 \right\}, A_1 = \left\{ \begin{pmatrix} r_1 & 0 \\ 0 & r_2 \end{pmatrix} : r_i \in \mathbb{R}_+^{\times} \right\}$
 $\chi_{(\epsilon_1, \epsilon_2, \nu_1, \nu_2)} \left(\begin{pmatrix} \eta_1 & 0 \\ 0 & \eta_2 \end{pmatrix} \begin{pmatrix} r_1 & 0 \\ 0 & r_2 \end{pmatrix} \right) = \eta_1^{\epsilon_1} \eta_2^{\epsilon_2} r_1^{\nu_1} r_2^{\nu_2}$
 $\pi(\epsilon_1, \epsilon_2, \nu_1, \nu_2) = LQ$ of the minimal principal series
 $Ind_{P_1}^G(\chi_{(\epsilon_1, \epsilon_2, \nu_1, \nu_2)} \otimes 1)$

Note: The principal series LQ $\pi(1, 0, \frac{\nu}{2}, \frac{\nu}{2})$ coincides with $\pi(0, \nu)$ (attached to H_0) for any ν .

GL(4,R) (towards GL(n,R))

$$\mathcal{K} = O(4)$$
 has rank 2, so $T_0 = SO(2)^2$
 $\mathcal{A}_0 = (\mathbb{R}^{\times}_+)^2$, and $\mathcal{H}_0 = T_0 \mathcal{A}_0 \simeq (\mathbb{C}^{\times})^2$

$$\ln \mathfrak{g}, \mathfrak{h}_{0} = \left\{ X = \begin{pmatrix} r & x & 0 & 0 \\ -x & r & 0 & 0 \\ 0 & 0 & s & y \\ 0 & 0 & -y & s \end{pmatrix} : r, s, x, y \in \mathbb{R} \right\}$$

We also have $H_1\simeq\mathbb{C}^{ imes} imes (\mathbb{R}^{ imes})^2$, and $H_2\simeq {(\mathbb{R}^{ imes})}^4$,

$$\mathfrak{h}_1 = \left\{ \begin{pmatrix} r & x & 0 & 0 \\ -x & r & 0 & 0 \\ 0 & 0 & s & 0 \\ 0 & 0 & 0 & t \end{pmatrix} \right\}, \qquad \mathfrak{h}_2 = \left\{ \begin{pmatrix} r & 0 & 0 & 0 \\ 0 & s & 0 & 0 \\ 0 & 0 & t & 0 \\ 0 & 0 & 0 & u \end{pmatrix} \right\}$$

Are these all?

١

Let $\varepsilon_1, \varepsilon_2, f_1, f_2 \in \mathfrak{h}_0^*$ be defined by $\varepsilon_1(X) = ix$, $\varepsilon_2(X) = iy$, $f_1(X) = r$, $f_2(X) = s$.

 $\Delta = \{\pm 2\varepsilon_1, \pm 2\varepsilon_2, \pm \varepsilon_1 \pm \varepsilon_2 \pm (f_1 - f_2)\}$

 $\Delta_i = \{\pm 2\varepsilon_1, \pm 2\varepsilon_2\}$, all noncompact. Clearly, $2\varepsilon_1$ and $2\varepsilon_2$ are strongly orthogonal. Are they conjugate?

It is easy to see that
$$\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$
 takes $2\varepsilon_1$ to $-2\varepsilon_2$.

Sets of strongly orthogonal nc roots: \emptyset , $\{2\varepsilon_1\}$, $\{2\varepsilon_1, 2\varepsilon_2\}$. So we have all CSGs.

Characters of the CSGs:

$$\begin{split} & \mathcal{H}_0 \simeq \left(\mathbb{C}^{\times}\right)^2 \text{, so} \quad \widehat{\mathcal{H}_0} \longleftrightarrow \mathbb{Z}^2 \times \mathbb{C}^2 \\ & \mathcal{H}_1 \simeq \mathbb{C}^{\times} \times \left(\mathbb{R}^{\times}\right)^2 \text{, so} \quad \widehat{\mathcal{H}_1} \longleftrightarrow \mathbb{Z} \times \mathbb{C} \times \left(\mathbb{Z}/2\mathbb{Z}\right)^2 \times \mathbb{C}^2 \\ & \mathcal{H}_2 \simeq \left(\mathbb{R}^{\times}\right)^4 \text{, so} \quad \widehat{\mathcal{H}_2} \longleftrightarrow \left(\mathbb{Z}/2\mathbb{Z}\right)^4 \times \mathbb{C}^4 \end{split}$$

Note: Each set is a 4 parameter family of characters.

What about the real Weyl groups???

Fix a CSG H = TA, and let $M = Cent_G(A)$, so that MA is a Levi subgroup of G.

Theorem (Vogan, IC4)

$$W(G, H) \simeq (W_C)^{\theta} \ltimes (W(M \cap K, H) \times W_r)$$
$$\simeq (W_C)^{\theta} \ltimes ((W_{i,c} \ltimes \mathcal{A}(H)) \times W_r)$$

- W_{i,c} is the Weyl group of the system Δ_{i,c} of compact imaginary roots in Δ = Δ(g_C, h_C);
- W_r is the Weyl group of the system Δ_r of real roots in Δ ;
- A(H) is an abelian two-group which depends on the group G (not just on the Lie algebra and root system); if G is "nice", then W_{i,c} κ A(H) is contained in the Weyl group W_i of the imaginary roots in Δ. The group A(H) must preserve Δ_{i,c}.
- Let $\Delta_C = \{ \alpha \in \Delta : \alpha \text{ is complex and } (\alpha, \rho_i) = (\alpha, \rho_r) = 0 \}$ (a root system). Then W_C is the Weyl group of Δ_C , and $(W_C)^{\theta}$ the θ -fixed part of it.

GL(4,R), Fundamental CSG

 $\Delta_{i,c} = \emptyset = \Delta_r \Longrightarrow W_{i,c}$ and W_r are trivial.

To compute the abelian 2-group $\mathcal{A}(\mathcal{H}_0)$, consider $\Delta_{i,n} = \{\pm 2\varepsilon_1, \pm 2\varepsilon_2\}$. If our general element of \mathfrak{h}_0 is written

$$X(x, y, r, s) = \begin{pmatrix} r & x & 0 & 0 \\ -x & r & 0 & 0 \\ 0 & 0 & s & y \\ 0 & 0 & -y & s \end{pmatrix}$$

the two root reflections change the sign on x and on y, resp. They are represented by diag(1, -1, 1, 1) and diag(1, 1, 1, -1) in O(4).

So $\mathcal{A}(H_0)$ has rank 2, and order 4; it is isomorphic to W_i .

Note: diag(1, -1, 1, 1) and diag(1, 1, 1, -1) are not in SO(4), but their product is. In $SL(4, \mathbb{R})$, $\mathcal{A}(H_0)$ has rank 1 and order 2. (Changing the sign on both coordinates simultaneously.)

The complex piece of the Weyl group

The group $(W_C)^{\theta}$

Let $\Delta_C = \{ \alpha \in \Delta : \alpha \text{ is complex, and orthogonal to both } \rho_i \text{ and } \rho_r \}$. Then Δ_C is a root system, which is the disjoint union of two systems Δ_1 and Δ_2 such that $\Delta_2 = \{ \theta (\alpha) : \alpha \in \Delta \}$. Then $(W_C)^{\theta}$ is generated by the $\{ s_{\alpha} s_{\theta \alpha} : \alpha \in \Delta_1 \}$.

For $GL(4,\mathbb{R})$ and H_0 , we can take $\rho_i = \varepsilon_1 + \varepsilon_2$, and $\rho_r = 0$. Then

$$\Delta_{\mathcal{C}} = \{ \pm (\varepsilon_1 - \varepsilon_2) \pm (f_1 - f_2) \}$$

= $\{ \pm (\varepsilon_1 - \varepsilon_2 + f_1 - f_2) \} \cup \{ \pm (\varepsilon_1 - \varepsilon_2 - f_1 + f_2) \}.$

Then $(W_C)^{\theta} = \langle w = s_{\alpha} s_{\theta \alpha} \rangle$, where $\alpha = \varepsilon_1 - \varepsilon_2 + f_1 - f_2$. $w \cdot X(x, y, r, s) = X(y, x, s, r)$ (switching the two \mathbb{C}^{\times} factors) $W(G, H_0)$ has order 8. The parameters attached to H_0 are therefore: $(k_1, k_2, \nu_1, \nu_2) \in \mathbb{Z}^2 \times \mathbb{C}^2$ with $(k_1, k_2, \nu_1, \nu_2) \sim (\pm k_1, \pm k_2, \nu_1, \nu_2) \sim (k_2, k_1, \nu_2, \nu_1).$

Note: $M_0A_0 = GL(2, \mathbb{R}) \times GL(2, \mathbb{R}) \hookrightarrow GL(4, \mathbb{R})$, and each pair (k_i, ν_i) determines a representation of $GL(2, \mathbb{R})$.

For $H_2 \simeq (\mathbb{R}^{\times})^4$, all roots are real. $W(G, H_2) \simeq W_r \simeq W(A_3) \simeq S_4$ The parameters are $(\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4, \nu_1, \nu_2, \nu_3, \nu_4) \in (\mathbb{Z}/2\mathbb{Z})^4 \times \mathbb{C}^4$,

up to permutation of the four indices.

GL(4,R), CSG 1

Now for H_1 :

$$\begin{aligned} X &= X(x, r, s, t) := \begin{pmatrix} r & x & 0 & 0 \\ -x & r & 0 & 0 \\ 0 & 0 & s & 0 \\ 0 & 0 & 0 & t \end{pmatrix} \in \mathfrak{h}_1 \\ \text{Define } \varepsilon(X) &= ix, \ f_1(X) = r, \ f_2(X) = s, \ f_3(X) = t. \\ \Delta_i &= \Delta_{i,n} = \{ \pm 2\varepsilon \}, \quad \Delta_r = \{ \pm (f_2 - f_3) \}, \\ \text{complex roots } \{ \pm \varepsilon \pm (f_1 - f_2), \pm \varepsilon \pm (f_1 - f_3) \} \\ W_{i,c} \text{ is trivial.} \qquad \mathcal{A}(H_1) \text{ has rank 1; it coincides with } W_i = \langle s_{2\varepsilon} \rangle. \\ (W_C)^{\theta} \text{ is trivial because no complex root is orthogonal to } \rho_i. \\ W_r &= \langle s_{f_2 - f_3} \rangle \text{ (switching the two coordinates)} \end{aligned}$$

The parameters are $(k, \nu, \epsilon_1, \epsilon_2, \nu_1, \nu_2) \in \mathbb{Z} \times \mathbb{C} \times (\mathbb{Z}/2\mathbb{Z})^2 \times \mathbb{C}^2$ with $(k, \nu, \epsilon_1, \epsilon_2, \nu_1, \nu_2) \sim (-k, \nu, \epsilon_1, \epsilon_2, \nu_1, \nu_2) \sim (k, \nu, \epsilon_2, \epsilon_1, \nu_2, \nu_1)$.

```
Cartan \#0:
split: 0; compact: 0; complex: 2
canonical twisted involution: e
twisted involution orbit size: 3; fiber size: 1; strong inv: 3
imaginary root system: A1.A1
real root system is empty
complex factor: A1
real form \#1: [0] (1)
real form \#0: [1] (1)
Cartan \#1:
split: 2; compact: 0; complex: 1
canonical twisted involution: 1,2,3,2,1
twisted involution orbit size: 6; fiber size: 1; strong inv: 6
```

```
imaginary root system: A1
real root system: A1
complex factor is empty
real form \#1: [0] (1)
```

Cartan #2: split: 4; compact: 0; complex: 0 canonical twisted involution: 1,2,1,3,2,1 twisted involution orbit size: 1; fiber size: 1; strong inv: 1 imaginary root system is empty real root system: A3 complex factor is empty real form #1: [0] (1)

real:

Weyl Groups; Fundamental CSG

real: realweyl choose Cartan class (one of 0,1,2): 0 Name an output file (return for stdout, ? to abandon):

```
real weyl group is W^C.((A.W_{ic}) \times W^R), where:
W^C is isomorphic to a Weyl group of type A1
A is an elementary abelian 2-group of rank 2
W_{ic} is trivial
W^R is trivial
```

```
generators for W<sup>C</sup>:
1,3
generators for A
2
1,2,3,2,1
```

Weyl Group for CSG1

```
real: realweyl
choose Cartan class (one of 0,1,2): 1
Name an output file (return for stdout, ? to abandon):
```

```
real weyl group is W^{C}.((A.W_{ic})xW^{R}), where:

W^{C} is trivial

A is an elementary abelian 2-group of rank 1

W_{ic} is trivial

W^{R} is a Weyl group of type A1

generators for A

2

generators for W^{R}:
```

```
1,2,3,2,1
```

```
real:
```

Weyl group for the split CSG

```
real: realweyl
choose Cartan class (one of 0,1,2): 2
Name an output file (return for stdout, ? to abandon):
```

```
real weyl group is W^{C}.((A.W_{ic}) \times W^{R}), where:

W^{C} is trivial

A is trivial

W_{ic} is trivial

W^{R} is a Weyl group of type A3

generators for W^{R}:
```

```
1
2
```

```
3
```

```
real:
```

GL(n,R)

Let
$$m = \lfloor \frac{n}{2} \rfloor$$
, $\delta = n - 2m = 0$ or 1.

Fundamental CSG: $H_0 \simeq (\mathbb{C}^{\times})^m \times (\mathbb{R}^{\times})^{\delta}$

There are m + 1 CSGs: $H_j \simeq (\mathbb{C}^{\times})^j \times (\mathbb{R}^{\times})^{n-2j}$ for $0 \le j \le m$. $\widehat{H_j} \longleftrightarrow \mathbb{Z}^j \times \mathbb{C}^j \times (\mathbb{Z}/2\mathbb{Z})^{n-2j} \times \mathbb{C}^{n-2j}$

Define a basis of \mathfrak{h}_j^* analogous to before: ε_i and f_i for $1 \le i \le j$, and g_i for $1 \le i \le n-2j$.

Imaginary roots (all noncompact): $\pm 2\varepsilon_i$ for $1 \le i \le j$.

This gives a root system of type $(A_1)^j$. $W_{i,c} = \{1\}$, W_i is an abelian 2-group of rank j.

Each reflection is represented by a (diagonal) element in O(n), so $\mathcal{A}(H_j) \simeq (\mathbb{Z}/2\mathbb{Z})^j$, inverting the elements of the SO(2) factors.

GL(n,R) continued

Real roots:
$$\Delta_r = \{\pm(g_i - g_l) : 1 \le i < l \le n - 2j\}$$

 $W_r \simeq S_{2n-j}$, permuting the split factors.

Complex roots: $\{\pm \varepsilon_i \pm \varepsilon_l \pm (f_i - f_l)\} \cup \{\pm \varepsilon_i \pm (f_i - g_l)\}$

Choose $\rho_i = \sum \varepsilon_i$, and ρ_r arbitrary, then $\Delta_C = \{\pm(\varepsilon_i - \varepsilon_l) \pm (f_i - f_l)\}$, a root system of type $A_{j-1} \times A_{j-1}$.

 $(W_C)^{\theta} \simeq S_j$ acts by permuting the \mathbb{C}^{\times} factors.

Lemma

 $\widehat{H_j}/W(G, H_j) \longleftrightarrow \{(k_1, ..., k_j, \nu_1, ..., \nu_j, \epsilon_1, ..., \epsilon_{n-2j}, \mu_1, ..., \mu_{n-2j})\} / \sim k_i \in \mathbb{Z}, \nu_i, \mu_i \in \mathbb{C}, \epsilon_i \in \mathbb{Z}/2\mathbb{Z}, modulo:$ permutation of the first *j* and the last n - 2j coordinates, and modulo sign on the k_i .

For each j, this is an n-parameter family of characters.

New Example: G=SO(2,2)

$$\begin{split} & \mathcal{K} = \mathcal{S}(O(2) \times O(2)), \quad H_0 \simeq \mathcal{S}O(2)^2 \\ & \mathfrak{h}_0 = \left\{ X(x,y) = \begin{pmatrix} 0 & x & 0 & 0 \\ -x & 0 & 0 & 0 \\ 0 & 0 & 0 & y \\ 0 & 0 & -y & 0 \end{pmatrix} \right\}; \end{split}$$

Define $\varepsilon_1(X(x, y)) = ix$, $\varepsilon_2(X(x, y)) = iy$.

Roots: $\Delta = \Delta_i = \{\pm \varepsilon_1 \pm \varepsilon_2\}$ all noncompact, Type $A_1 \times A_1$.

 $\varepsilon_1 - \varepsilon_2$ and $\varepsilon_1 + \varepsilon_2$ are strongly orthogonal;

Are they conjugate by $W(G, H_0) = W_{i,c} \ltimes \mathcal{A}(H_0) = \mathcal{A}(H_0)$?

Recall that W_i acts only by switching the coordinates, and/or changing both signs.

Since $\mathcal{A}(H_0) \subset W_i$, the two roots are NOT conjugate.

Notice: diag(1, -1, 1, -1) changes both signs, but no element of K switches the two entries.

 $\mathcal{A}(\mathcal{H}_0) = \langle \mathbf{s}_{\varepsilon_1 - \varepsilon_2} \mathbf{s}_{\varepsilon_1 + \varepsilon_2} \rangle \simeq \mathbb{Z}/2\mathbb{Z}$

4 strongly orthogonal sets: \varnothing , $\{\varepsilon_1 - \varepsilon_2\}$, $\{\varepsilon_1 + \varepsilon_2\}$, $\{\varepsilon_1 - \varepsilon_2, \varepsilon_1 + \varepsilon_2\}$.

Recall: Embedding $GL(n, \mathbb{R}) \hookrightarrow SO(n, n)$

Cartan (polar) decomposition: $A \in \mathfrak{gl}(n, \mathbb{R})$, A = U + P with $U \in \mathfrak{so}(n)$, P symmetric.

Then $A \mapsto \begin{pmatrix} U & P \\ P & U \end{pmatrix} \in \mathfrak{so}(\mathfrak{n}, \mathfrak{n})$, and this is a Lie algebra map.

The CSGs of $GL(n, \mathbb{R})$ then map to CSGs of SO(n, n) (since both have rank n).

CSGs of SO(2,2)

$$H_{1} \simeq \mathbb{C}^{\times}, \ \mathfrak{h}_{1} = \left\{ X(x, r) = \begin{pmatrix} 0 & x & r & 0 \\ -x & 0 & 0 & r \\ r & 0 & 0 & x \\ 0 & r & -x & 0 \end{pmatrix} \right\}$$
$$H_{2} \simeq (\mathbb{R}^{\times})^{2}, \ \mathfrak{h}_{2} = \left\{ X(r, s) = \begin{pmatrix} 0 & 0 & r & 0 \\ 0 & 0 & 0 & s \\ r & 0 & 0 & 0 \\ 0 & s & 0 & 0 \end{pmatrix} \right\}$$

That makes only three.....

Notice: $\varepsilon_1 - \varepsilon_2$ and $\varepsilon_1 + \varepsilon_2$ are conjugate by $\sigma = diag(1, 1, 1, -1) \in O(2, 2)!$ $H_3 = \sigma H_1 \sigma^{-1} \simeq \mathbb{C}^{\times}, \ \mathfrak{h}_3 = \left\{ X(x, r) = \begin{pmatrix} 0 & x & r & 0 \\ -x & 0 & 0 & -r \\ r & 0 & 0 & -x \\ 0 & -r & x & 0 \end{pmatrix} \right\}$ Fundamental CSG: $W(G, H_0)$ is an abelian 2-group of rank 1; $\widehat{H_0}/W(G, H_0) : (k_1, k_2) \in \mathbb{Z}^2$ with $(k_1, k_2) \sim (-k_1, -k_2)$

For H_1 (or H_3), if $\varepsilon(X) = ix$, and f(X) = r, then $\Delta_i = \{\pm 2\varepsilon\}$ (noncompact), $\Delta_r = \{\pm 2f\}$, and there are no complex roots.

 W_i acts by inversion on SO(2), and the element $diag(1, -1, 1, -1) \in K$ has the same effect; i. e., $\mathcal{A}(H_1)$ has rank 1. W_r acts by inversion on \mathbb{R}_+^{\times} . $\widehat{H_1}/W(G, H_1): (k, \nu) \in \mathbb{Z} \times \mathbb{C}$ with $(k, \nu) \sim (\pm k, \pm \nu)$.

For the split Cartan, $W(G, H_2) = W_r$ the Weyl group of type $A_1 \times A_1$. $\widehat{H_2}/W(G, H_2) : (\epsilon_1, \epsilon_2, \nu_1, \nu_2) \in (\mathbb{Z}/2\mathbb{Z})^2 \times \mathbb{C}^2$, $(\epsilon_1, \epsilon_2, \nu_1, \nu_2) \sim (\epsilon_1, \epsilon_2, -\nu_1, -\nu_2) \sim (\epsilon_2, \epsilon_1, \nu_2, \nu_1) \sim (\epsilon_2, \epsilon_1, \nu_2, \nu_1)$ In O(2,2), we have only three CSGs, because $\varepsilon_1 - \varepsilon_2$ and $\varepsilon_1 + \varepsilon_2$ are conjugate by $\sigma = diag(1, 1, 1, -1)$.

Notice that this reflection is NOT in W_i ! So O(2, 2) is not "nice" as in the Theorem.

Fundamental CSG: $W(G, H_0)$ is an abelian 2-group of rank 2; $\widehat{H_0}/W(G, H_0) : (k_1, k_2) \in \mathbb{Z}^2$ with $(k_1, k_2) \sim (\pm k_1, \pm k_2)$

For H_1 , $W(G, H_1)$ and the characters are as for SO(2, 2).

For the split Cartan, $W(G, H_2) \simeq W_r \rtimes \langle \sigma \rangle$, and $(\epsilon_1, \epsilon_2, \nu_1, \nu_2) \sim (\epsilon_1, \epsilon_2, \pm \nu_1, \pm \nu_2) \sim (\epsilon_2, \epsilon_1, \pm \nu_2, \pm \nu_1)$ The group O(p, q) is not "nice" (not in Harish-Chandra's class). However, SO(p, q) is.

Some theorems only apply directly to "nice" groups. atlas only deals with nice groups.

For G = O(p, q), do the analysis for SO(p, q) first.

If p + q is odd, then $O(p, q) \simeq SO(p, q) \times \{\pm Id\}$.

For O(p, q) with p + q even, check what conjugation by diagonal elements does, as we did for O(2, 2).

CSGs in G=SO(p,q)

Recall that if $m \leq p, q$ then $GL(m, \mathbb{R}) \hookrightarrow SO(m, m) \hookrightarrow SO(p, q)$.

The CSGs of $GL(m, \mathbb{R})$ then extend to CSGs of SO(p, q), by adding SO(2) factors (and all of them may be obtained that way).

We get CSGs of the form

$$H_{r,t} = \left(\mathbb{C}^{\times}\right)^r \times \left(\mathbb{R}^{\times}\right)^t \times SO(2)^{n-2r-t}$$

Here $n = \lfloor \frac{p+q}{2} \rfloor$, the rank of *G*, and *r* and *t* integers such that:

- $2r+t \leq \min\{p,q\}$
- t is even if both p and q are, and t is odd of both p and q are
- If 2r = p = q then there are two nonconjugate CSGs that are isomorphic to $(\mathbb{C}^{\times})^r$ (they become conjugate in O(2r, 2r)).

For example:

G = SO(7,3) has rank 5.

There are three CSGs, corresponding to (r, t) = (0, 1), (0, 3), and (1, 1).

$$\begin{split} H_0 &\cong \mathbb{R}^{\times} \times SO(2)^4 \\ H_1 &\cong (\mathbb{R}^{\times})^3 \times SO(2)^2 \\ H_2 &\cong \mathbb{C}^{\times} \times \mathbb{R}^{\times} \times SO(2)^2 \end{split}$$

Real Weyl Groups: Exercise!

The End: Thank You!